Legendre, in 1783, extended Maclaurin's theorem concerning ellipsoids of revolution to the case of any spheroid of revolution where the attracted point, instead of being limited to the axis or equator, occupied any position in space; and Laplace, in his treatise Theorie du mouvement et de la figure elliptique des planetes (published in 1784), effected a still further generalization by proving, what had been suspected by Legendre, that the theorem was equally true for any confocal ellipsoids.

Finally, in a celebrated memoir, Theorie des attractions des spheroides et de la figure des planetes, published in 1785 among the Paris Memoirs for the year 1782, although written after the treatise of 1784, Laplace treated exhaustively the general problem of the attraction of any spheroid upon a particle situated outside or upon its surface.

To show the cause of this motion, let BQ represent a section of an oblate spheroid through its shortest axis, PP. We may consider this spheroid to be that of the earth, the ellipticity being greatly exaggerated.

View more

A slight deformation of the earth will thus result; and the axis of figure of the distorted spheroid will no longer be PP, but a line P'P' between PP and RR.

Geographical latitude, which is used in mapping, is based on the supposition that the earth is an elliptic spheroid of known compression, and is the angle which the normal to this spheroid makes with the equator.